Skip to main content

2 posts tagged with "Transit Gateway"

Transit Gateway

View All Tags

Leveraging AWS Prefix Lists

· 7 min read
Chiwai Chan
Tinkerer

AWS VPC Prefix List is a feature of the AWS Networking that has been around for a short while, however, I have yet to see it leveraged to its full potential, and more often than not I have not seen them used at all.

There are 2 types of Prefix Lists:

  • AWS-managed Prefix Lists: as the name indicates these lists are managed by AWS, and they are used to maintain a set of IP address ranges for AWS services, e.g. S3, DynamoDB and CloudFront.
  • Customer-managed Prefix Lists: these are created and maintained by anyone who has access to the AWS Console, AWS APIs or AWS SDKs. This is what we will be focusing on.

In this blog we will go into:

  • What Customer-managed Prefix Lists are
  • How they can be leveraged by AWS Security Groups
  • How they can be leveraged by AWS Subnet Route Tables
  • How they can be leveraged by AWS Transit Gateway Route Tables
  • Considerations

AWS VPC Customer-managed Prefix List is a great tool to have available as it provides the ability to track and maintain a list of CIDR block values, which can then be referenced by other AWS Networking components in their rules or route tables. Each Prefix List supports either IPv4 or IPv6 based addresses, and a number of expected Max Entries for the list must be defined; the number of entries in the list cannot exceed the Max Entries.

You can use Prefix List to maintain a list of CIDR blocks of Subnets or VPCs; or, track a list of similiar IP addresses based on a grouping of your choice, e.g. EC2 instances with a certain function - you can even track CIDR values of Subnets, VPCs and EC2 within the same list.

I have a blog on how to automatically maintain a list of EC2 instances Private IP addresses based on a Tag set against an EC2 instance: Maintain a Prefix List of EC2 Private IP Addresses using EventBridge

Let's create a Prefix List in the AWS Console

1

2

3

Prefix List – Security Group Reference

Customer-managed Prefix List is great option to have to centrally manage and track a list of CIDR blocks allowed to ingress an ENI by referencing Prefix Lists in Security Groups, a single Prefix List instance can be referenced by one or many Security Groups within the same account or cross-account.

Let's take a look at an example

This is especially useful in scenarios where you have fleet of EC2 instances where you like to allow the same network traffic sources to ingress on Port 22 to perform administration tasks, these fleet EC2 instances could scatter across multiple VPCs, and may even be scattered across multiple AWS accounts.

4

Often, we add a new Source CIDR to all Security Groups as we allow a new machine to perform administration tasks to the same fleet of EC2 instances, or even remove (or not when we forget) a CIDR Source when a machine is retired. In the past we would have modified each and every one of these Security Groups.

Here is how we can leverage Customer-managed Prefix Lists with Security Groups:

5

Here, under the same Security Group rules outcome we externalise the CIDR values into a Prefix List and reference the list in all 3 Security Groups; in the case of Security Groups spanning across multiple AWS accounts the Prefix Lists can be shared with other AWS accounts using Resource Access Manager (RAM). Now, we can allow a new machine to perform administration tasks across the entire fleet of EC2 instances by only adding a new CIDR Source to a single location, conversely, we can remove a machine by deleting a CIDR Source. There is also an added benefit of reduced effort in the need to identify which Security Groups have a rule for an IP address if we were to remove access across the entire fleet using this pattern – because it is maintained in a single location.

Prefix List – Subnet Route Table Reference

Another way to use Prefix Lists is to use them to centrally manage and track a list of CIDR block destinations to route traffic out of a Subnet’s Route Table to the same Target, a Prefix List can be referenced by one or many Subnet Route Tables within the same account or cross-account using RAM.

Let's take a look at an example

Below, we have a scenario with 3 different Route Tables across the two VPCs, with each Route Table with the same Transit Gateway Target for the same set of Destinations; and also the same Destinations routed to their respective Egress Only Internet Gateway (EIGW) for their VPC.

6

Here is how we can leverage Customer-managed Prefix Lists with Subnet Route Tables:

7

We have externalised the Destination CIDR values of the 3 Route Tables into 2 separate Prefix Lists: 1st Prefix List contains the CIDR block values of Destinations routed for the EIGW in their respective VPC; the 2nd Prefix List contains CIDR block values of Destinations routed for the same Transit Gateway instance all VPCs is an attachment of.

Prefix List – Transit Gateway Route Table Reference

Lastly, in a Transit Gateway Route Table you have the option to either to define static routes or have routes dynamically propagated from a Transit Gateway attachment. You also have the option to use a Prefix List for routing.

Here is how we can leverage Customer-managed Prefix Lists with Transit Gateway Route Tables:

8

To reference a Prefix List in a Transit Gateway Route Table, you have to reference it under the "Prefix list references" section:

9

Considerations

  • The aggregated total Max Entries of all Prefix Lists referenced by a resource (e.g. a Security Group) is counted towards the resource's quota - not the aggregated total of actual entries of all Prefix Lists. Be conscious of the Prefix List you reference in a resource, does the resource referencing the Prefix List require all the CIDR values offered in the list? if not, you are not using Prefix Lists economically.
  • If the same Prefix List instance is referenced by multiple AWS resources then consistency is enforced - operational effort is reduced due to fewer changes by not having to change a values in multiple locations.
  • Before you add or remove a CIDR value from a Prefix List, consider the flow on impact it may have to the downstream resources that reference this list, as you may inadvertently terminate some traffic flow, or worse, open up traffic to sources you don't intend to.

Conclusion

One of the things I have noticed during my short time in consulting so far is that organising Cloud resources (in particular Networking), structuring them correctly and consistently across multiple environments will set up a solid foundation for organisations in the long term, however, it is often an area that is overlooked and is only paid attention to when the rate of innovation is slowed down due to complexities and inconsistencies. Prefix Lists is a great option to have to improve consistency and operational efficiencies.

Here I have only detailed the basic use of Customer-managed Prefix Lists, but in my other blog I have a more advanced use case leveraging Prefix Lists: Work-around for cross-account Transit Gateway Security Group Reference

This solution compliments the use of networking solutions in other blogs I have written:

Work-around for cross-account Transit Gateway Security Group Reference

· 8 min read
Chiwai Chan
Tinkerer

Have you ever tried to create a Security Group with a Source or Destination rule that references another Security Group? how about referencing a Security Group from another AWS account to allow ingress network traffic over a Transit Gateway architecture? if this question peaked your interest then you should keep reading.

In this blog we will go into:

  • Prerequisites
  • What we like to have
  • What we probably end up doing most of the time
  • What we could do instead using AWS Customer-managed Prefix Lists
  • Considerations

This blog builds on top of the Prefix List patterns I described in this blog: AWS Prefix List, so have a read of it to provide you with a better context as you read on.

What we like to have

How many of us have tried to implement the following architecture but realised it was not technically possible?

1

I myself have certainly tried to implement this a couple of years ago but to no avail; recently, a client said they also tried to implement this very same pattern, as per usual I did a bit of googling and confirmed that it is still the case today.

What we probably end up doing most of the time

This is probably what most of us do to allow cross-account network traffic to ingress into an EC2 instance over a Transit Gateway architecture.

2

In VPC A, instead of being able to reference a Security Group (outside of AWS account A, so from either account B, C or D) as the Source traffic of an ENI (via Security Group rules) attached to the EC2 instance in VPC A, one of the current methods is to add the CIDR blocks of the source traffic in the Source rules in the Security Group in VPC A: the CIDR value could either be the entire VPC CIDR block (of VPC B, C or D) to allow all traffic from a VPC, or, a Subnet's CIDR block to narrow down the ingress traffic to flow only from within a sub-section of a source VPC; or, the specific Private IP addresses of the source EC2 instances (e.g. 172.20.15.1/32).

The approach you decide for this pattern depends on the level of security posture you are comfortable with implementing into your network architecture:

  • VPC CIDR block values: this will allow ingress traffic wide open from the entire source externally VPC, if you intend for all resources from a source VPC to send traffic to your target resources then this option is fine
  • Subnet CIDR block values: this provides a narrower approach with a slightly tighter level of network security than above, if you intend for all resources from a source Subnet to send traffic to your target resources then this option is fine
  • Specific CIDR values of a Private IP addresses: this option provides the tightest network security control of the 3 options, however, maintaining a list Private IP addresses of EC2 instances outside of your AWS account (whether you or a 3rd party owns the account) will require a some operational effort. The solution proposed below will provide an automated mechanism to solve this particular problem

Network security controls could be further tightened when coupled with the use of NACLs, have a read of my blog for an example of incoroporating NACLs into your network architecture: Swiss Cheese Network Security: Factorising Security Group Rules into NACLs and Security Group Rules

An example scenario that could be problematic for this architecure is that, if the Source Private IP addresses (for resources outside of the account) needs to be constantly added or removed in the Security Group in VPC A - pet EC2 instances being provisioned and terminated: this will be a burden for the operations team as they would constantly need to update the Security Group rules to relfect changes happening outside of the AWS account - this would not be a problem if we were able to reference in rules the Security Groups from other AWS accounts, perhaps one day AWS will have this ability. This is especially burdensome when you have to co-ordinate changes with 3rd party owners of the AWS accounts outside of your control, imagine having to maintain changes from a dozen external AWS accounts.

What we could do instead using AWS Customer-managed Prefix Lists

Here we propose a pattern to achieve the same outcome but instead we leverage Prefix Lists, to externalise the management of CIDR blocks in the AWS accounts (B, C and D) where the network traffic originate from, then reference the external Prefix List in each of the accounts (B, C, and D) in the Security Group rules of account A; with the help of AWS Resource Access Manager (RAM) as Prefix Lists as shared with AWS account A by account B, C and D.

3

In the diagram above we have 3 options for the CIDR values maintained in these Prefix Lists outside of AWS account A, these types of values are similiar to the 3 options when the rules were defined (explained earlier) in the Security Group in VPC A, but the principle of network security controls remains the same in terms of tightness.

This pattern achieves the same outcome as what we desire if Security Groups could be (it is not supported by AWS at the time of writing this blog) referenced over a Transit Gateway, but it does have its drawbacks: the Max Entries (not the actual) of a Prefix List is counted towards the Quota of the Security Group that references it – so the example illustrated above results in 3 rules (1 for each Prefix List for each account) created in the Security Group in VPC A. This patterns has merits when you want allow inversion of control to enable external AWS accounts to control what network traffic is allowed to enter with the help of using Prefix Lists shared through RAM - remember the control is essentially delegated to the external AWS accounts, so you have to trust the level of scoping for CIDR value entries is being maintained in these accounts.

Bonus - Extra tight network security controls

The pattern above solves a small to medium sized problem on its own, but if we were to combine it with the patterns detailed in these two blogs: Leveraging AWS Prefix Lists and Maintaining a Prefix List of EC2 Private IP Addresses using AWS EventBridge, we can achieve the following:

4

By combining the 3 patterns we will end up with a network architecture that achieves the following:

  • A work-around for cross-account Security Group reference over a Transit Gateway.
  • List of Private IP addresses of similar EC2 instances (any grouping of your choosing) automatically tracked and managed in a Prefix List within each spoke account based on a Tagged value on the EC2 instances.
  • The same Prefix List in each spoke account can be referenced (via Resource Access Manager) to route return traffic back from the Subnet Route Table in VPC A to the originating Transit Gateway – this could potentially fully automate routing of traffic to Transit Gateway – great for scenarios where you only want return traffic for one or two IP addresses (especially when they are pets) in account B, C or D.
  • The same Prefix List in each spoke account can be referenced (via Resource Access Manager) to route return traffic back from Transit Gateway to the destined source Transit Gateway Attachment – this could potentially be used to automate routing if static or propagated routing is not used in a Transit Gateway Route Table. We can narrow it down to a very small subset of distributed allowable return traffic IP block for a spoke source traffic attachment – so only a subset of return traffic is allowed to return back to the originating TGW spoke.
  • Depending on the narrowness of the CIDR values used in the Prefix Lists, e.g. a few distributed /32 IPs in the Prefix List for a source VPC with a 1024 addresses for it's CIDR block, if used effectively, least privilege for network security is achieved using this pattern.

Considerations

As with any patterns, services or components, the pros and cons of each one needs to be weighed against each other and thought out in the interest of the long-term overall benefits for your solution and most importantly for your organisation. Restructuring existing networking and migrating workloads into it can be difficult and time consuming - especially if manual steps to deploy your infrastructure is required. Use Prefix Lists economically so that you do not under consume the number of Max Entries set by leveraging Lambdas to automatically update Max Entries; check out my blog on Maintaining a Prefix List of EC2 Private IP Addresses using AWS EventBridge.

This solution compliments the use of networking solutions in other blogs I have written: