Skip to main content

13 posts tagged with "AWS"

AWS

View All Tags

Smart Cat Feeder – Part 2

· 8 min read
Chiwai Chan
Tinkerer

seeed studio xiao esp32c3

The source code for this blog can be found in my Github repository: https://github.com/chiwaichan/aws-iot-cat-feeder. This repository only includes the source code for the solution implemented up to this stage/blog in the project.

In the end I decided to go with the Seeed Studio XIAO ESP32C3 implementation of the ESP32 micro-controller for $4.99 (USD). I also ordered some other bits and pieces from AliExpress that's going to take some time to arrive.

In this Part 2 of the blog series I will demonstrate the exchange of messages (JSON payload) using the MQTT protocol between the ESP32 and the AWS IoT Core Service, as well as the exchange of messages between a Lambda Function and the ESP32 - this Lambda is written in Python which is intended to replace the Lambda triggered by the IoT button event found in Part 1.

Prerequisites if you like to try out the solution using the source code

  • An AWS account.
  • An IoT button. Follow Part 1 of this blog series to onboard your IoT button into the AWS IoT 1-Click Service.
  • Create 2 Certificates in the AWS IoT Core Service. One certificate is for the ESP32 to publish and subscribe to Topics to IoT Core, and the other is used by the IoT button's Lambda to publish a message to a Topic subscribed by the ESP32.

aws iot certificate list

Create a Certificate using the recommended One-Click option.

aws iot certificate create

Download the following files and take note of which device (the ESP32 or the IoT Lambda) you like to use this certificate for:

aws iot certificate created

Activate the Certificate.

aws iot certificate activated

Click on Done. Then repeat the steps to create the second Certificate.

Publish ESP32 States to AWS IoT Core

seeed studio xiao esp32c3 aws iot

The diagram above depicts the components used that is required in order for the ESP32 to send the States of the Cat Feeder, I've yet to decide what to send but examples could be 1.) battery level 2.) Cat weight (based on a Cat's RFID chip and some how weighing them while they eat) 3.) or how much food is remaining in the feeder. So many options.

  1. ESP32: This is the micro-controller that will eventually have a bunch of hardware components that we will take States from, then publish to a Topic.
  2. MQTT: This is the lightweight pub/sub protocol used to send IoT messages over TCP/IP to AWS IoT Core.
  3. AWS IoT Core: This is the service that will forward message to the ESP32 micro-controller that are subscribed to Topics.
  4. IoT Topic: The Lambda will publish a message along with the type of button event (One click, long click or double click) to the Topic "cat-feeder/action", the value of the event is subject to what is supported by the IoT button you use.
  5. Do something later on: I'll decide later on what to do downstream with the State values. This could be anything really, e.g. save a time series of the data into a database or bunch of DynamoDB tables, or get an alert to remind me to charge the Cat Feeder's battery with a customizable threshold?

Instructions to try out the Arduino/ESP32 part of the solution for yourself

  1. Install the Arduino IDE.
  2. Follow this AWS blog on setting up an IoT device, start from "Installing and configuring the Arduino IDE" to including "Configuring and flashing an ESP32 IoT device". Their blog walks us through on preparing the Arduino IDE and on how to flash the ESP32 with a Sketch.
  3. Clone the Arduino source code from my Github repository: https://github.com/chiwaichan/aws-iot-cat-feeder
  4. Go to the "secrets.h" tab and replace the following variables:

arduino secrets

  • WIFI_SSID: This is the name of your Wifi Access Point
  • WIFI_PASSWORD: The password for your Wifi.
  • AWS_IOT_ENDPOINT: This is the regional endpoint of your AWS Iot Core Service.

aws iot endpoint

  • AWS_CERT_CA: The content of the Amazon Root CA 1 file created in the prerequisites for the first certificate.
  • AWS_CERT_CRT: The content of the xxxxx.cert.pem file created in the prerequisites for the first certificate.
  • AWS_CERT_PRIVATE: The content of the xxxxx.private.key file created in the prerequisites for the first certificate.
  1. Flash the code onto the ESP32

arduino flash code

You might need to push a button on the micro-controller during the flashing process depending on the your ESP32 micro-controller

  1. Check the Arduino console to ensure the ESP32 can connect to AWS IoT and publish messages.

arduino console

  1. Verify the MQTT messages is received by AWS IoT Core

aws iot mqtt test client

Sending a message to the ESP32 when the IoT button is pressed

architecture diagram seeed

The diagram above depicts the components used to send a message to the ESP32 each time the Seeed AWS IoT button is pressed.

  1. AWS IoT button: this is the IoT button I detail in Part 1; it's a physical button that can be anywhere in the world where I can press to feed the fur babies once the final solution is built.
  2. AWS Lambda: This will replace the Lambda from the previous blog with the one shown in the diagram.
  3. IoT Topic: The Lambda will publish a message along with the type of button event (One click, long click or double click) to the Topic "cat-feeder/action", the value of the event is subject to what is supported by the IoT button you use.
  4. AWS IoT Core: This is the service that will forward message to the ESP32 micro-controller that are subscribed to Topics.
  5. ESP32: We will see details of the button event from each click in the Arduino console once this part is set up.

Instructions to set up the AWS IoT button part of the solution

  1. Take the 3 files create in the second set of Certificate created in the AWS IoT Core Service in the prerequisites, then create 3 AWS Secrets Manager "Other type of secret: Plaintext" values. We need a Secret value for each file. This is to provide the Lambda Function the Certificate to call AWS IoT Core.

aws secrets manager

  1. Get a copy of the AWS code from my Github repository: https://github.com/chiwaichan/aws-iot-cat-feeder

  2. In a terminal go into the aws folder and run the commands found in the "sam-commands.text" file, be sure to replace the following values in the commands to reflect the values for your AWS account. This will create a CloudFormation Stack of the AWS IoT Services used by this entire solution.

  • YOUR_BUCKET_NAME
  • Value for IoTEndpoint
  • Value for CatFeederThingLambdaCertName, this is the name of the long certificate value found in Iot Core created in the prerequisites for the second certificate.
  • Value for CatFeederThingLambdaSecretNameCertCA, e.g. "cat-feeder-lambda-cert-ca-aaVaa2", check the name in Secrets Manager.
  • Value for CatFeederThingLambdaSecretNameCertCRT
  • Value for CatFeederThingLambdaSecretNameCertPrivate
  • Value for CatFeederThingControllerCertName, this is the name of the long certificate value found in Iot Core created in the prerequisites for the second certificate used by the ESP32.
  • Find the Lambda created in the CloudFormation stack and Test the Lambda to manually trigger the event.
  • If you have setup an IoT 1-Click Button found in Part 1, you can replace that Lambda with the one created by the CloudFormation Stack. Go to the "AWS IoT 1-Click" Service and edit the "template" for the CatFeeder project.

aws iot one click lambda

  1. Let's press the Iot Button in the following way:
  • Single Click
  • Double Click
  • Long Click
  1. Verify the button events are received by the ESP32 by going to the Arduino console and you should see something like this:

arduino console aws iot mqtt messages

What's next?

I recently got a Creality3D Ender-3 V2 printer, I've got many known unknowns I know I need to get up to speed with in regards to fundamentals of 3D printing and all the tools, techniques and software associated with it. I'll attempt to print an enclosure to house the ESP32 controller, the wires, power supply/battery (if I can source a battery that lasts for more than a month on a single charge) and most importantly the dry cat food; I like to use some mechanical components to dispense food each time we press the IoT button described in Part 1. I'll talk in depth on the progress made on the 3D printing in Part 3.

Smart Cat Feeder – Part 1

· 4 min read
Chiwai Chan
Tinkerer

If you are forgetful when it comes to feeding your fur babies like me, and you often only realise you need to put some dry food into the bowl when you are at work then you should read these series of blogs. Over time, I'll be designing and building a smart cat feeder over time using a combination of components such as Arduino micro controllers, motors, sensors and IoT devices and Cloud services. I'll publish the steps taken in these series of blogs, also, I'll publish any designs and source code as I figure things out and make decisions on aspects of the design.

In this part 1 of the series, I will do a walkthrough on setting up an AWS IoT 1-Click device to trigger a Lambda Function. I got myself one of these Seeed IoT buttons for $20; I also bought a NCR18650B battery which I realised later on is only required if I wanted to run the device without it being powered by a USB type-C cable (used for charging the power as well).

seeed iot button for aws

Firstly, make sure you have an AWS account. Then install the AWS IoT1-Click app onto your phone and log in using your AWS account. With these we will be able to link IoT devices up to our AWS account.

aws iot app login

Claim the IoT device with Device ID

aws iot app claim

Scan the barcode on the back of the device; you can scan multiple devices in bulk.

aws iot app scan aws iot app added aws iot app complete claim aws iot app claim wait for click

Next, I'll set up the Wifi on the device so that it can reach the internet internet from home. Can't see why I can't set it up to my phone's AP for feeding on the go, I'll try it out some other time.

aws iot app wifi

Now we'll create a project and add the IoT device to a placement group in the AWS Console. Give a name and description for the project.

aws iot new project

Next define a template, this is where we create a Lambda function; all the plumbing between the IoT device and Lambda will be handled for us.

aws iot project template

Next we create a placement for the Iot device.

aws iot project placement

aws iot project new placement

aws iot project placement created

Since I have no Arduino micro-controllers (have yet to buy one), I will get the Lambda to log a message.

aws iot lambda

Push the button on the Iot device, wait for the event LED status to turn green after flashing white then check the logs CloudWatch Logs.

aws iot lambda logs

At some point I have to code the Lambda to perform a real action as each event comes through, which will be demonstrated in a following blog in the series instead of just logging to CloudWatch logs.

Within the app on your phone you can see status of each IoT device such as the remaining battery life percentage.

aws iot app devices

As well as a history of the button's events.

aws iot app device events

In the next blog, I'll configure the Lambda to push the event to a Topic for AWS IoT Core to subscribe to, which in turns will trigger an event to an ESP32 ( I've yet to decide on a specific version of the micro-controller) using the IoT MQTT protocol.

Storing Electricity Price Data on AWS

· 2 min read
Chiwai Chan
Tinkerer

For a personal project of mine, I like to be able to analyse the pattern of New Zealand's electricity Spot Prices; to identify the cheapest hours during the day to pull power from the grid, as well as, the best time of the day to sell back to the grid.

I will be creating a series of blogs as I build out the fragments of my project. Over time, I will integrate the individual fragments into a bigger overall solution. One of the drivers for analysing the New Zealand Spot Prices: is the aim in reducing the payback period of my Solar and Tesla Powerwall purchase. I have had the 2 systems for over a year at the time when this blog was published.

In this blog, I will explain how I will be collecting Spot Prices from electricityinfo.co.nz using one of their APIs; each Spot Price data reading will then be stored as a JSON file in an S3 bucket where it will be query-able using SQL. Using the same pattern, I will also track the actual cost per unit of power I am paying for from pulling power from the grid, my electricity provider is Flick Electric and I will also leverage their APIs to retrieve the pricing data.

power price reporting

An architecture diagram of the solution. The orchestration of retrieval and storage of the data using AWS serverless components.

query-athena

Querying price data stored as JSON file in an S3 bucket using SQL in Athena.

The source code for this AWS SAM project can be found in my Github repository: https://github.com/chiwaichan/athena-spot-prices

In order for this solution to work you must have a set of credentials for Flick Electric, otherwise you can modify the SAM template to disable the Lambda Function's scheduler that triggers the Lambda to retrieve data. This Lambda function retrieves the credentials from AWS Secrets Manager, so you will need to create a Secret before deploying this solution as demonstrated in the AWS CLI shown in the screenshot below.

create secrets manager value

In a follow up blog, I will demonstrate the use of these Athena tables using a reporting service called QuickSight.